DDataflow
DDataflow is an end2end tests solution. See our docs manual for more details. Additionally, use help(ddataflow) to see the available methods.
Source code in ddataflow/ddataflow.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
|
__init__(project_folder_name, data_sources=None, data_writers=None, data_source_size_limit_gb=1, enable_ddataflow=False, sources_with_default_sampling=None, snapshot_path=None, default_sampler=None, default_database=None)
Initialize the dataflow object. The input of this object is the config dictionary outlined in our integrator manual.
Important params: project_folder_name: the name of the project that will be stored in the disk snapshot_path: path to the snapshot folder data_source_size_limit_gb: limit the size of the data sources default_sampler: options to pass to the default sampler sources_with_default_sampling: if you have tables you want to have by default and dont want to sample them first default_database: name of the default database. If ddataflow is enabled, a test db will be created and used. sources_with_default_sampling : Deprecated: use sources with default_sampling=True instead if you have tables you want to have by default and dont want to sample them first
Source code in ddataflow/ddataflow.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
|
current_project()
staticmethod
Returns a ddataflow configured with the current directory configuration file Requirements for this to work:
- MLTools must be called from withing the project root directory
- There must be a file called ddataflow_config.py there
- the module must have defined DDataflow object with the name of ddataflow
@todo investigate if we can use import_class_from_string
Source code in ddataflow/ddataflow.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
|
disable()
Disable ddtaflow overriding tables, uses production state in other words
Source code in ddataflow/ddataflow.py
291 292 293 |
|
disable_offline()
Programatically enable offline mode
Source code in ddataflow/ddataflow.py
217 218 219 |
|
download_data_sources(overwrite=True, debug=False)
Download the data sources locally for development offline Note: you need databricks-cli for this command to work
Options: overwrite: will first clean the existing files
Source code in ddataflow/ddataflow.py
314 315 316 317 318 319 320 321 322 |
|
enable()
When enabled ddataflow will read from the filtered data sources instead of production tables. And write to testing tables instead of production ones.
Source code in ddataflow/ddataflow.py
198 199 200 201 202 203 204 |
|
enable_offline()
Programatically enable offline mode
Source code in ddataflow/ddataflow.py
209 210 211 212 |
|
get_mlflow_path(original_path)
overrides the mlflow path if
Source code in ddataflow/ddataflow.py
389 390 391 392 393 394 395 396 397 398 |
|
is_enabled()
To be enabled ddataflow has to be either in offline mode or with enable=True
Source code in ddataflow/ddataflow.py
409 410 411 412 413 |
|
name(*args, **kwargs)
A shorthand for source_name
Source code in ddataflow/ddataflow.py
285 286 287 288 289 |
|
path(path)
returns a deterministic path replacing the real production path with one based on the current environment needs. Currently support path starts with 'dbfs:/' and 's3://'.
Source code in ddataflow/ddataflow.py
249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
|
print_status()
Print the status of the ddataflow
Source code in ddataflow/ddataflow.py
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
|
read(name)
Read the data writers parquet file which are stored in the ddataflow folder
Source code in ddataflow/ddataflow.py
358 359 360 361 362 363 364 365 366 367 |
|
sample_and_download(ask_confirmation=True, overwrite=True)
Create a sample folder in dbfs and then downloads it in the local machine
Source code in ddataflow/ddataflow.py
324 325 326 327 328 329 330 331 |
|
set_logger_level(level)
Set logger level. Levels can be found here: https://docs.python.org/3/library/logging.html#logging-levels
Source code in ddataflow/ddataflow.py
448 449 450 451 452 453 454 |
|
set_up_database(db_name)
Perform USE $DATABASE query to set up a default database. If ddataflow is enabled, use a test db to prevent writing data into production.
Source code in ddataflow/ddataflow.py
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
|
setup_project()
staticmethod
Sets up a new ddataflow project with empty data sources in the current directory
Source code in ddataflow/ddataflow.py
126 127 128 129 130 131 132 133 |
|
source(name, debugger=False)
Gives access to the data source configured in the dataflow
You can also use this function in the terminal with --debugger=True to inspect the dataframe.
Source code in ddataflow/ddataflow.py
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
|
source_name(name, disable_view_creation=False)
Given the name of a production table, returns the name of the corresponding ddataflow table when ddataflow is enabled If ddataflow is disabled get the production one.
Source code in ddataflow/ddataflow.py
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|
write(df, name)
Write a dataframe either to a local folder or the production one
Source code in ddataflow/ddataflow.py
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
|